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Qudhec, Cunadu, H3C 357 

(Re1 ~ i i w l  5 June 1995 ) 

We consider the uniform motion of a drop of one fluid moving in another immiscible, unbounded, fluid. We 
examine the condition of normal stress balance across the interface. Consistent application of this condition 
to linear order in the velocity requires the introduction of a new parameter, A, which takes into account 
deformations of the drop from a spherical shape. Imposing a condition for the critical size of these 
deformations allows us to predict the maximum size of the drop for a given terminal velocity. For the case of 
raindrops this gives a maximum size of approximately 2 millimeters. 

K E Y  WORDS: Stress balance, critical size, rain drops. 

The motion of bubbles in liquids is of considerable interest in problems of engineering. 
The subject was already investigated from the days of Stokes’. Interest in the subject is 
still very active and many papers appear on the shape oscillations of drops and bubbles. 
It is generally assumed that the deviations from the spherical shape are of an ellipsoidal 
form2. We find this assumption questionable since there is no reason to expect 
a symmetry about a plane through the center of the drop perpendicular to the direction 
of motion. 

We have re-examined the supposedly well understood problem of the steady state 
motion of a bubble. We find that the boundary conditions on the solution of the 
Navier-Stokes equation are not applied systematically up to first order in the Reynolds 
number. Consider a bubble or a drop of radius “a” immersed entirely in another 
immiscible fluid unbounded outside. Let the steady state velocity of the drop be 
denoted by q. Taking spherical polar coordinates r,  0, qh with the origin at the center of 
the drop and the z axis along the direction of q, we have complete symmetry about qh. In 
such a coordinate system the center of the drop will be stationary, and the fluids inside 
and outside the drop will develop velocity fields $‘ and v ’  and pressure fields 8’ and p’. 
We denote quantities inside the drop or bubble with a caret and quantities outside are 
without a caret. The velocity and pressure fields are determined from a linearised, 
time-independent form of the Navier-Stokes equations. It is assumed that the velocity 
is small enough to allow linearization and that the steady state condition allows for 
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time independence. For incompressible fluids the continuity equation gives 

v.v = 0 (1) 

Equation (1) enables us to solve for u, if v, is known. Following the method similar to 
that given in Sommerfeld', one obtains ' 

A 
r 

p ' =  - ~ c o s u  

8' = Ar cos 0 

^ ^ ^  

Here p and p are the viscosities of the fluids A, B, C, A, B, C are to be determined by 
applying the boundary conditions. f ib  and v; are found using Eq. (1). There are six 
unknown parameters in Eqs. (2-5). A seventh parameter comes from B0 - p o ,  the 
difference between the static pressures inside and outside the bubble. The seven 
unknowns are determined from the seven boundary conditions discussed immediately 
below. 

Asymptotic values of the velocity components in the outside fluid must give 
a uniform velocity in the z direction, 

u ; l r + x  = qcosu (6) 

v; Ir+ ~ = - q sin 0. 

Immiscibility of the fluids yields 

u:lr=, = 0 

fi:1,=, =o.  
Continuity of the tangential stress gives leads to 

(7) 

and continuity of the tangential velocity across the interface gives 

U k l , = ,  = fi;1,=,. (1 1) 

These six boundary conditions are adequate to determine six unknowns A, B, C, 
A^, B, c. The last, Eq. (1 1) is often called the slip condition. Actually we consider this 
a misnomer. A real slip should correspond to a discontinuity in the tangential velocities 
across the interface3. There is no compelling physical principle upon which this 
boundary condition is based, but it seems to phenomenologically realised. We harbour, 
however, some reservations about its strict application. The interface of two immiscible 
flowing fluids is a complicated system which has not been thoroughly investigated. 
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DROPS IN IMMISCIBLE FLUIDS 8 5  

There is one more boundary condition, namely the continuity of the normal stress 
across the interface. This condition has not been systematically applied. I t  has only 
been used in the limit q = 0. In this limit one obtains 

= P o  - P o .  
' I r = a  

where Tis the surface tension between the two fluids. A velocity profile obtained from 
Eqs. (4) and (5) using boundary conditions (6) - ( 1  1 )  is qualitatively sketched in 
Figure 1. 

The drag force which is a frictional force, is given by4 

q is determined self-consistently by imposing 

This gives a terminal velocity 

For a falling drop p - @ < 0 while for a rising bubble p - @ > 0. 
Use of the boundary conditions, Eqs. (6- 1 l),  determine the velocity fields of the 

solution completely. The last condition which should be satisfied, namely that the 

Figure 1 Qualitative velocity fields inside and outside B drop  moving with constant velocity. 
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normal stress across the boundary must balance, has been used to compute the pressure 
inside the drop. In previous analyses it has, however, only been applied to  the 
q independent, static stress across the interface. We find this consideration somewhat 
arbitrary. The correct condition of normal stress balance includes contributions from 
the viscous pressure terms, which are of course linear in q. The full condition is 

= ( r i o  + 01 - 2 P L )  - ( P o  + P1 - 2PCr,) (16) 

where, inside and outside the bubble respectively, p,, and P,, are the rr components of 
the full pressure tensor, fro and p o  are the static 4 independent hydrostatic pres-sures 
(which have been considered in previous analyses), ijl and p1 are the induced hy- 
drodynamical pressures which are linear in q,  irr and C,, correspond to the viscous stress 
given by 

and ( c T ~ ~ ~ ~ , ~ ~ ~ ~ , ) ~ ~  is the normal stress due to the surface tension. 
The continuity of normal stress in lowest order ( q  = 0) gives Eq. (13). The application 

of the full version of boundary condition, equation (16), gives inconsistent results since 
terms linear in q become equated to zero; the conditions Eqs. (6- 1 l), determine all the 
velocities uniquely. Application of the normal stress condition up to first order in q over 
determines the system. One can imagine using the normal stress balance condition as 
a boundary condition ignoring one of the others for example, the continuity of 
tangential velocity, (1 1). This procedure does not seem to lead to sensible results. We 
must, therefore, introduce one additional parameter. We propose to allow the shape of 
the bubble to alter, and we use the normal stress condition up to first order in q to 
determine the deformation. 

The hydrodynamical pressure and viscous stress depend non-trivially on the polar 
angle. Indeed 

a,  =ArcosO (1  8a) 
A 

p1 =7cos0 

while 

i 2 2  
1 O F  E,, = - r cos 8 

Err = (y(; - $) + (T)) COS 0 

(194 

hence Eq. (16) is actually inconsistent for a spherical bubble. Previous analyses have 
simply neglected the hydrodynamic and viscous pressure terms. 

We suggest the following minimal modification to remove this inconsistency. 
Physically, any moving bubble will be slightly distorted from a spherical shape, with the 
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DROPS I N  IMMISCIBLE FLUIDS 87 

distortion proportional to q. All other fields will also be affected by this distortion but 
only at higher order. Taking into account these distortions in the normal stress balance 
equation leads to a consistent solution. We hypothesize a deformation given by 

r(U) = a + AcosO + ()(A2) (20) 

where the new parameter A characterizes the induced pressure deformation. The 
normal stress due to the surface tension for such a deformed surface is given by 

Hence, from Eq. (16) we get 

This implies 

- 3 a q ~ i  3 P +  2 p  
- 4T ( P + p  1’ ~~ 
- 

The fractional deformation M = A/u is then given by 

a2HI(l’ - P ) I  
2T 

M =  

replacing for q with the terminal velocity. 
Equation (24) provides a relation for the fractional distortion of a bubble in terms of 

the radius of the bubble at the terminal velocity. I t  is seen that M is proportional to (1’. 

We observe that all drops suffer some deformation, but for larger drops the deforma- 
tion can become of order unity. When M - 1, the deformation is so large that the 
analysis given will have to be modified. A change in the shape will always produce 
changes in the drag force. For a spherical bubble the drag force is linear in y. A change 
in the shape will produce terms of order y3. The present calculation is correct up to 
terms linear in y and a separate detailed calculation will be necessary to investigate 
changes in the drag force due to changes in the shape. The drag force will change and 
the drop will break up at some critical M = M ,  < 1. Thus the largest the drop will have 
a radius 
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Substituting for the parameters for a rain drop and taking M ,  = 1 we find the largest 
raindrop will have a radius of 2mm at terminal velocity. This elementary prediction 
seems consistent with every day observations. 

It is often diffcult to make measurements under gravity when drops have large 
terminal velocities. If experiments are performed, however, with fluids of comparable, 
densities, the terminal velocities are not large. Detailed experimental observation of 
large drops or bubbles in fluids of comparable densities will enable us to get a precise 
value of M ,  which is independent of the fluids considered. 
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